ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Швецов Д.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 63]      



Задача 116073

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 9,10,11

Четырёхугольник ABCD вписан в окружность. Перпендикуляр, опущенный из вершины C на биссектрису угла ABD, пересекает прямую AB в точке C1; перпендикуляр, опущенный из вершины B на биссектрису угла ACD, пересекает прямую CD в точке B1. Докажите, что  B1C1 || AD.

Прислать комментарий     Решение

Задача 66682

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 9,10,11

Высоты $AH$, $CH$ остроугольного треугольника $ABC$ пересекают внутреннюю биссектрису угла $B$ в точках $L_1$, $P_1$, а внешнюю в точках $L_2$, $P_2$. Докажите, что ортоцентры треугольников $HL_1P_1$, $HL_2P_2$ и вершина $B$ лежат на одной прямой.
Прислать комментарий     Решение


Задача 66813

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 3+
Классы: 9,10,11

Пусть $AA_1$, $BB_1$, $CC_1$ – высоты треугольника $ABC$; $A_0$, $C_0$ – точки пересечения описанной окружности треугольника $A_1BC_1$ с прямыми $A_1B_1$ и $C_1B_1$ соответственно. Докажите, что прямые $AA_0$ и $CC_0$ пересекаются на медиане треугольника $ABC$ или параллельны ей.
Прислать комментарий     Решение


Задача 66939

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Теоремы Чевы и Менелая ]
[ Ортоцентр и ортотреугольник ]
Сложность: 3+
Классы: 8,9,10,11

Высоты $AA_1$, $CC_1$ остроугольного треугольника $ABC$ пересекаются в точке $H$; $B_0$ – середина стороны $AC$. Прямая, проходящая через вершину $B$ параллельно $AC$, пересекает прямые $B_0A_1$, $B_0C_1$ в точках $A'$, $C'$ соответственно. Докажите, что прямые $AA'$, $CC'$, $BH$ пересекаются в одной точке.
Прислать комментарий     Решение


Задача 64334

Темы:   [ Углы между биссектрисами ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 8,9

Биссектрисы AA1 и CC1 прямоугольного треугольника ABC  (∠B = 90°)  пересекаются в точке I. Прямая, проходящая через точку C1 и перпендикулярная прямой AA1, пересекает прямую, проходящую через A1 и перпендикулярную CC1, в точке K. Докажите, что середина отрезка KI лежит на отрезке AC.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 63]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .