Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 79]
|
|
Сложность: 3+ Классы: 9,10,11
|
Какое наименьшее число соединений требуется для организации проводной сети связи из 10 узлов, чтобы при выходе из строя любых двух узлов связи сохранялась возможность передачи информации между любыми двумя оставшимися (хотя бы по цепочке через другие узлы)?
|
|
Сложность: 3+ Классы: 8,9,10
|
а) Дан выпуклый четырёхугольник ABCD. Пусть r1 ≤ r2 ≤ r3 ≤ r4 – взятые в порядке возрастания радиусы вписанных окружностей треугольников ABC, BCD, CDA, DAB. Может ли оказаться, что r4 > 2r3?
б) В выпуклом четырёхугольнике ABCD диагонали пересекаются в точке E. Пусть r1 ≤ r2 ≤ r3 ≤ r4 – взятые в порядке возрастания радиусы вписанных окружностей треугольников ABE, BCE, CDE, DAE. Может ли оказаться, что r2 > 2r1?
|
|
Сложность: 3+ Классы: 10,11
|
Каждая из двух равных окружностей ω1 и ω2 проходит через центр другой. Треугольник ABC вписан в ω1, а прямые AC, BC касаются ω2.
Докажите, что cos∠A + cos∠B = 1.
Даны натуральные числа a и b, причём a < 1000. Докажите, что если a21 делится на b10, то a² делится на b.
Выпуклый пятиугольник ABCDE таков, что AB || CD, BC || AD, AC || DE, CE ⊥ BC. Докажите, что EC – биссектриса угла BED.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 79]