Страница: 1 [Всего задач: 4]
В прямоугольнике ABCD точка M – середина стороны CD. Через точку C провели прямую, перпендикулярную прямой BM, а через точку M – прямую, перпендикулярную диагонали BD. Докажите, что два проведённых перпендикуляра пересекаются на прямой AD.
|
|
Сложность: 4- Классы: 10,11
|
В треугольнике ABC M – середина стороны BC, P – точка пересечения касательных в точках B и C к описанной окружности, N – середина отрезка MP. Отрезок AN пересекает описанную окружность в точке Q. Докажите, что ∠PMQ = ∠MAQ.
|
|
Сложность: 4- Классы: 9,10,11
|
В остроугольном треугольнике ABC проведены высоты BB', CC'. Через A и C' проведены две окружности, касающиеся BC в точках P и Q.
Докажите, что точки A, B', P, Q лежат на одной окружности.
|
|
Сложность: 5- Классы: 9,10,11
|
Дан фиксированный треугольник ABC. Пусть D – произвольная точка в плоскости треугольника, не совпадающая с его вершинами. Окружность с центром в D, проходящая через A, пересекает вторично прямые AB и AC в точках Ab и Ac соответственно. Аналогично определяются точки Ba, Bc, Ca и Cb. Точку D назовём хорошей, если точки Ab, Ac, Ba, Bc, Ca и Cb лежат на одной окружности.
Сколько может оказаться точек, хороших для данного треугольника ABC?
Страница: 1 [Всего задач: 4]