Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 54]
|
|
Сложность: 4- Классы: 6,7,8
|
Серёжа придумал фигуру, которую легко разрезать
на две части и сложить из них квадрат (см. рис.).
Покажите как по-другому
разрезать эту фигуру на две части, из которых тоже можно сложить квадрат.
|
|
Сложность: 4- Классы: 8,9,10
|
Внутри некоторого тетраэдра взяли произвольную точку X. Через каждую вершину тетраэдра провели прямую, параллельную отрезку, соединяющему X с точкой пересечения медиан противоположной грани. Докажите, что четыре полученные прямые пересекаются в одной точке.
|
|
Сложность: 4- Классы: 8,9,10
|
а) Докажите, что найдётся многоугольник, который можно разделить отрезком на две равные части так, что этот отрезок разделит одну из сторон многоугольника пополам, а другую – в отношении 1 : 2.
б) Найдётся ли выпуклый многоугольник с таким свойством?
|
|
Сложность: 4- Классы: 8,9,10,11
|
Дана коробка (прямоугольный параллелепипед), по поверхности (но не внутри) которой ползает муравей. Изначально муравей сидит в углу. Верно ли, что среди всех точек поверхности на наибольшем расстоянии от муравья находится противоположный угол? (Расстоянием между двумя точками считаем длину соединяющего их кратчайшего пути по поверхности параллелепипеда.)
|
|
Сложность: 4- Классы: 8,9,10,11
|
В треугольнике ABC на стороне BC отмечена точка K. В треугольники ABK и ACK вписаны окружности, первая касается стороны BC в точке M, вторая – в точке N. Докажите, что BM·CN > KM·KN.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 54]