Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 87]
На острове Контрастов живут и рыцари, и лжецы. Рыцари всегда говорят правду, лжецы всегда лгут. Некоторые жители заявили, что на острове чётное число рыцарей, а остальные заявили, что на острове нечётное число лжецов. Может ли число жителей острова быть нечётным?
Может ли произведение двух последовательных натуральных чисел равняться
произведению двух последовательных чётных чисел?
В треугольнике ABC точки A', B', C' лежат на сторонах BC, CA и AB соответственно. Известно, что ∠AC'B' = ∠B'A'C, ∠CB'A' = ∠A'C'B,
∠BA'C' = ∠C'B'A. Докажите, что точки A', B', C' – середины сторон треугольника ABC.
В прямоугольник вписан четырёхугольник (на каждой стороне прямоугольника по
одной вершине четырёхугольника).
Докажите, что периметр четырёхугольника не меньше удвоенной диагонали прямоугольника.
Квадрат ABCD и окружность пересекаются в восьми точках так, что образуются четыре криволинейных треугольника: AEF, BGH, CIJ, DKL (EF, GH, IJ, KL – дуги окружности). Докажите, что
а) сумма длин дуг EF и IJ равна сумме длин дуг GH и KL;
б) сумма периметров криволинейных треугольников AEF и CIJ равна сумме периметров криволинейных треугольников BGH и DKL.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 87]