ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Произволов В.В.

Вячеслав Викторович Произволов (род. в 1939) - математик, к.ф-м.н., автор книги "Задачи на вырост"

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 87]      



Задача 107857

Темы:   [ Линейные неравенства и системы неравенств ]
[ Уравнения в целых числах ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9

Пусть a, b, c – такие целые неотрицательные числа, что   28a + 30b + 31c = 365.  Докажите, что  a + b + c = 12.

Прислать комментарий     Решение

Задача 107858

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Подсчет двумя способами ]
[ Ортогональная (прямоугольная) проекция ]
[ Разрезания на параллелограммы ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9,10

Квадрат со стороной 1 разрезали на прямоугольники, у каждого из которых отметили одну сторону.
Докажите, что сумма длин всех отмеченных сторон не может быть меньше 1.

Прислать комментарий     Решение

Задача 108046

Темы:   [ Неравенство треугольника ]
[ Признаки и свойства параллелограмма ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

Стороны AB, BC, CD и DA четырёхугольника ABCD равны соответственно сторонам A'B', B'C', C'D' и D'A' четырёхугольника A'B'C'D', причём известно, что  AB || CD  и  B'C' || D'A'.  Докажите, что оба четырёхугольника – параллелограммы.

Прислать комментарий     Решение

Задача 108168

Темы:   [ Симметрия помогает решить задачу ]
[ Вспомогательные равные треугольники ]
[ Ломаные ]
Сложность: 3+
Классы: 8,9

Внутри острого угла XOY взяты точки M и N, причём  ∠XON = ∠YOM.  На луче OX отмечена точка Q так, что  ∠NQO = ∠MQX,  а на луче OY – точка P так, что  ∠NPO = ∠MPY.  Докажите, что длины ломаных MPN и MQN равны.

Прислать комментарий     Решение

Задача 108175

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 7,8,9

На сторонах AB и BC равностороннего треугольника ABC взяты точки D и K, а на стороне AC – точки E и M, причём  DA + AE = KC + CM = AB.
Докажите, что угол между прямыми DM и KE равен 60°.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 87]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .