ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Число умножили на сумму его цифр и получили 2008. Найдите это число.

Вниз   Решение


По кругу расставлено 300 положительных чисел. Могло ли случиться так, что каждое из этих чисел, кроме одного, равно разности своих соседей?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 2]      



Задача 52485  (#М611)

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 4
Классы: 8,9

На хорде AB окружности S с центром в точке O взята точка C. D — вторая точка пересечения окружности S с окружностью, описанной около треугольника ACO. Докажите, что CD = CB.

Прислать комментарий     Решение


Задача 79382  (#М612)

Темы:   [ Периодичность и непериодичность ]
[ Десятичная система счисления ]
[ Периодические и непериодические дроби ]
Сложность: 3+
Классы: 8,9,10

a1, a2, a3, ..., an, ... – возрастающая последовательность натуральных чисел. Известно, что  an+1 ≤ 10an  при всех натуральных n.
Доказать, что бесконечная десятичная дробь 0,a1a2a3..., полученная приписыванием этих чисел друг к другу, непериодическая.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .