Страница:
<< 76 77 78 79
80 81 82 >> [Всего задач: 1703]
|
|
Сложность: 3+ Классы: 7,8,9
|
Из целых чисел от 1 до 100 удалили k чисел. Обязательно ли среди оставшихся чисел можно выбрать k различных чисел с суммой 100, если
а) k = 9; б) k = 8?
Докажите, что сумма длин любых двух медиан произвольного треугольника
а) не больше ¾ P, где P – периметр этого треугольника;
б) не меньше ¾ p, где p – полупериметр этого треугольника.
|
|
Сложность: 3+ Классы: 10,11
|
Все коэффициенты некоторого непостоянного многочлена целые и по модулю не превосходят 2015.
Докажите, что любой положительный корень этого многочлена больше чем 1/2016.
|
|
Сложность: 3+ Классы: 7,8,9
|
Можно ли целые числа от 1 до 2004 расставить в некотором порядке так, чтобы сумма каждых десяти подряд стоящих чисел делилась на 10?
|
|
Сложность: 3+ Классы: 7,8,9
|
В ящике лежат 111 шариков: красные, синие, зелёные и белые. Известно, что если, не заглядывая в ящик, вытащить 100 шариков, то среди них обязательно найдутся четыре шарика различных цветов. Какое наименьшее число шариков нужно вытащить, не заглядывая в ящик, чтобы среди них наверняка нашлись три шарика различных цветов?
Страница:
<< 76 77 78 79
80 81 82 >> [Всего задач: 1703]