Страница:
<< 115 116 117 118
119 120 121 >> [Всего задач: 1703]
|
|
Сложность: 3+ Классы: 10,11
|
Ищутся такие оканчивающиеся на 5 натуральные числа, что их цифры монотонно не убывают (то есть каждая цифра, начиная со второй, не меньше предыдущей цифры), и в десятичной записи их квадрата цифры тоже монотонно не убывают. Докажите, что таких чисел бесконечно много.
|
|
Сложность: 3+ Классы: 9,10
|
Сумма n чисел равна нулю, а сумма их квадратов равна единице. Докажите, что среди этих чисел найдутся два, произведение которых не больше – 1/n.
Докажите, что произведение всех целых чисел от 21917 + 1 до 21991 – 1 включительно не есть квадрат целого числа.
|
|
Сложность: 3+ Классы: 7,8,9
|
В банде 101 террорист. Все вместе они в вылазках ни разу не участвовали, а
каждые двое встречались в вылазках ровно по разу.
Докажите, что один из террористов участвовал не менее чем в 11 различных
вылазках.
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Дан куб с ребром длины n см. В нашем распоряжении имеется длинный кусок
изоляционной ленты шириной 1 см. Требуется обклеить куб лентой, при этом лента
может свободно переходить через ребро на другую грань, по грани она должна идти
по прямой параллельно ребру и не свисать с грани вбок. На сколько кусков необходимо разрезать ленту, чтобы обклеить куб?
Страница:
<< 115 116 117 118
119 120 121 >> [Всего задач: 1703]