Страница:
<< 118 119 120 121
122 123 124 >> [Всего задач: 1703]
|
|
Сложность: 3+ Классы: 8,9,10
|
Десятичные записи натуральных чисел выписаны подряд, начиная с единицы,
до некоторого n включительно: 12345678910111213...(n).
Существует ли такое n, что в этой записи все десять цифр встречаются
одинаковое количество раз?
Построить выпуклый четырёхугольник, зная длины всех сторон и отрезка,
соединяющего середины диагоналей.
|
|
Сложность: 3+ Классы: 8,9,10
|
На кружок пришло 60 учеников. Оказалось, что среди каждых десяти из них есть
не меньше трёх одноклассников.
Докажите, что среди кружковцев найдётся по меньшей мере 15 учеников, которые учатся в одном классе.
|
|
Сложность: 3+ Классы: 7,8,9
|
Каждый из 450 депутатов парламента дал пощёчину ровно одному своему коллеге.
Докажите, что можно избрать парламентскую комиссию из 150 человек, среди
членов которой никто никого не бил.
|
|
Сложность: 3+ Классы: 8,9,10
|
В таблице
0 1 2 3 ... 9
9 0 1 2 ... 8
8 9 0 1 ... 7
...
1 2 3 4 ... 0
отмечено 10 элементов так, что в каждой строке и каждом столбце отмечен один
элемент.
Докажите, что среди отмеченных элементов есть хотя бы два равных.
Страница:
<< 118 119 120 121
122 123 124 >> [Всего задач: 1703]