Страница:
<< 1 2 3 4
5 >> [Всего задач: 24]
Задача
109870
(#95.4.10.8)
|
|
Сложность: 5+ Классы: 9,10,11
|
Улицы города Дужинска – простые ломаные, не пересекающиеся между собой во внутренних точках. Каждая улица соединяет два перекрёстка и покрашена в один из трёх цветов: белый, красный или синий. На каждом перекрёстке сходятся ровно три улицы, по одной каждого цвета. Перекрёсток называется положительным, если при его обходе против часовой стрелки цвета улиц идут в следующем порядке: белый, синий, красный, и отрицательным в противном случае. Докажите, что разность между числом положительных и числом отрицательных перекрёстков кратна 4.
Задача
109863
(#95.4.11.1)
|
|
Сложность: 4 Классы: 10,11
|
Дана функция
f(
x)
= .
Найдите
f(
.. f(
f(19))
..)
95
раз .
Задача
109858
(#95.4.11.2)
|
|
Сложность: 4- Классы: 10,11
|
В прямоугольном параллелепипеде одно из сечений является правильным шестиугольником. Докажите, что этот параллелепипед – куб.
Задача
109874
(#95.4.11.3)
|
|
Сложность: 4- Классы: 9,10,11
|
Все стороны и диагонали правильного 12-угольника раскрашиваются в 12 цветов (каждый отрезок – одним цветом).
Существует ли такая раскраска, что для любых трёх цветов найдутся три вершины, попарно соединенные между собой отрезками этих цветов?
Задача
109859
(#95.4.11.4)
|
|
Сложность: 5 Классы: 10,11
|
На плоскости рассматривается конечное множество равных, параллельно расположенных квадратов, причем
среди любых
k+1
квадратов найдутся два пересекающихся. Докажите, что это множество можно разбить
не более чем на
2
k-1
непустых подмножеств так, что в каждом подмножестве все квадраты будут иметь общую точку.
Страница:
<< 1 2 3 4
5 >> [Всего задач: 24]