ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

a1, a2, a3, ..., an, ... – возрастающая последовательность натуральных чисел. Известно, что  an+1 ≤ 10an  при всех натуральных n.
Доказать, что бесконечная десятичная дробь 0,a1a2a3..., полученная приписыванием этих чисел друг к другу, непериодическая.

Вниз   Решение


Можно ли замостить доску 2003×2003 доминошками 1×2, которые разрешается располагать только горизонтально, и прямоугольниками 1×3, которые разрешается располагать только вертикально? (Две стороны доски условно считаются горизонтальными, а две другие – вертикальными.)

ВверхВниз   Решение


На плоскости даны 25 точек; известно, что из любых трёх точек можно выбрать две, расстояние между которыми меньше 1. Доказать, что среди данных точек найдутся 13, лежащие в круге радиуса 1.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 [Всего задач: 17]      



Задача 56993

Тема:   [ Точка Лемуана ]
Сложность: 7
Классы: 9

Прямые AK, BK и CK, где K — точка Лемуана треугольника ABC, пересекают описанную окружность в точках A1, B1 и C1. Докажите, что K — точка Лемуана треугольника A1B1C1.
Прислать комментарий     Решение


Задача 56994

Тема:   [ Точка Лемуана ]
Сложность: 7
Классы: 9

Докажите, что прямые, соединяющие середины сторон треугольника с серединами соответствующих высот, пересекаются в точке Лемуана.
Прислать комментарий     Решение


Страница: << 1 2 3 4 [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .