Страница: 1 [Всего задач: 5]
|
|
Сложность: 2 Классы: 6,7,8
|
В книге рекордов Гиннесса написано, что наибольшее известное простое число
равно 23021377 – 1. Не опечатка ли это?
Приходя в тир, игрок вносит в кассу 100 рублей. После каждого удачного выстрела
количество его денег увеличивается на 10%, а после каждого промаха –
уменьшается на 10%. Могло ли после нескольких выстрелов у него оказаться 80 рублей 19 копеек?
Для постройки типового дома не хватало места. Архитектор изменил проект:
убрал два подъезда и добавил три этажа. При этом количество квартир увеличилось.
Он обрадовался и решил убрать ещё два подъезда и добавить ещё три этажа.
Могло ли при этом квартир стать даже меньше, чем в типовом проекте? (В каждом подъезде одинаковое число этажей и на всех этажах во всех подъездах
одинаковое число квартир.)
В стене имеется маленькая дырка (точка). У хозяина есть флажок следующей формы (см. рисунок).
Покажите на рисунке все точки, в которые можно вбить гвоздь, так чтобы флажок закрывал дырку.
Отметьте на доске 8×8 несколько клеток так, чтобы любая (в том числе и любая
отмеченная) клетка граничила по стороне ровно с одной отмеченной клеткой.
Страница: 1 [Всего задач: 5]