ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Наконец, у Снежной Королевы появились все квадраты с целыми сторонами, но каждый в единственном экземпляре. Королева пообещала Каю, что он станет мудрым, если сможет из каких-то имеющихся квадратов сложить прямоугольник. Сможет ли он это сделать?
б) Отдыхая, Кай стал заполнять стеклянный аквариум ледяными кубиками, которые лежали рядом. Кубики были самых разных размеров, но среди них не было двух одинаковых. Сможет ли Кай заполнить аквариум кубиками целиком?

   Решение

Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 225]      



Задача 32788

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 7,8,9

На поле 10 на 10 для игры в "Морской Бой" стоит один четырехпалубный корабль. Какое минимальное число выстрелов надо произвести, чтобы наверняка его ранить?
Прислать комментарий     Решение


Задача 32789

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 7,8,9

На всех ребрах куба стоит по числу. На каждой грани (квадрате) пишется сумма четырех чисел, расположенных на ее ребрах (сторонах квадрата).  Расставьте числа 1 и -1 на ребрах так, чтобы все числа на гранях были различны.
Прислать комментарий     Решение


Задача 32794

Тема:   [ Математическая логика (прочее) ]
Сложность: 3
Классы: 7,8,9

(Продолжение задачи 32792)
Путешественник, попавший в государство, встретил четырех людей из задачи 3 и задал им вопрос:"Кто вы?".   Он получил такие ответы:
1-ый: "Все мы лжецы".
2-ой: "Среди нас 1 лжец".
3-ий: "Среди нас 2 лжеца".
4-ый: "Я ни разу не соврал и сейчас не вру".
Путешественник быстро сообразил, кем является четвертый житель. Как он это сделал?
Прислать комментарий     Решение


Задача 32807

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 3
Классы: 7,8,9

В нижнем левом углу шахматной доски 8 на 8 стоит фишка. Двое по очереди передвигают её на одну клетку вверх, вправо или вправо-вверх по диагонали.  Выигрывает тот, кто поставит фишку в правый верхний угол. Кто победит при правильной игре?
Прислать комментарий     Решение


Задача 32831

Тема:   [ Концентрические окружности ]
Сложность: 3
Классы: 7,8,9

Федя К. вышел из некоторой точки, прошел 1км на север, затем - 1км на восток, затем - 1км на юг и вернулся в исходную точку.
  а) Где такое могло произойти?
  б) Найдите все такие точки на Земле.
Прислать комментарий     Решение


Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 225]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .