Страница: 1
2 >> [Всего задач: 6]
|
|
Сложность: 3+ Классы: 9,10,11
|
Тангенсы углов треугольника – целые числа. Чему они могут быть равны?
|
|
Сложность: 3+ Классы: 7,8,9
|
Про положительные числа a, b, c известно, что 1/a + 1/b + 1/c ≥ a + b + c. Докажите, что a + b + c ≥ 3abc.
|
|
Сложность: 4- Классы: 9,10,11
|
Каждый зритель, купивший билет в первый ряд кинотеатра, занял одно из мест в первом ряду. Оказалось, что все места в первом ряду заняты, но каждый зритель сидит не на своём месте. Билетёр может менять местами соседей, если оба сидят не на своих местах. Всегда ли он может рассадить всех на свои места?
В выпуклом четырёхугольнике ABCD точки E и F являются
серединами сторон BC и CD соответственно. Отрезки AE, AF и EF делят четырёхугольник на четыре треугольника, площади которых равны (в каком-то порядке) последовательным натуральным числам. Каково наибольшее возможное значение площади треугольника ABD?
|
|
Сложность: 5 Классы: 9,10,11
|
В городе Удоеве выборы мэра проходят следующим
образом. Если в очередном туре голосования никто из кандидатов не набрал больше
половины голосов, то проводится следующий тур с участием всех кандидатов, кроме
последнего по числу голосов. (Никогда два кандидата не набирают голосов поровну;
если кандидат набрал больше половины голосов, то он становится мэром и выборы
заканчиваются.) Каждый избиратель в каждом туре голосует за одного из
кандидатов. Если это кандидат вышел в следующий тур, то избиратель снова
голосует за него. Если же кандидат выбыл, то все его избиратели голосуют за
одного и того же кандидата из числа оставшихся.
На очередных выборах
баллотировалось 2002 кандидата. Мэром стал Остап Бендер, занявший в первом туре
k-е место по числу голосов. Определите наибольшее возможное значение
k, если Остап Бендер был избран
а) в 1002-м туре;
б) в 1001-м
туре.
Страница: 1
2 >> [Всего задач: 6]