Страница:
<< 4 5 6 7 8 9
10 >> [Всего задач: 48]
Задача
116644
(#10.7)
|
|
Сложность: 4 Классы: 8,9,10
|
Для натуральных чисел a > b > 1 определим последовательность x1, x2, ... формулой . Найдите наименьшее d, при котором ни при каких a и b эта последовательность не содержит d последовательных членов, являющихся простыми числами.
Задача
116652
(#11.7)
|
|
Сложность: 4+ Классы: 10,11
|
Для натурального a обозначим через P(a) наибольший простой делитель числа a² + 1.
Докажите, что существует бесконечно много таких троек различных натуральных чисел a, b, c, что P(a) = P(b) = P(c).
Задача
116547
(#9.8)
|
|
Сложность: 4 Классы: 8,9
|
Прямую палку длиной 2 метра распилили на N палочек, длина каждой из которых выражается целым числом сантиметров. При каком наименьшем N можно гарантировать, что, использовав все получившиеся палочки, можно, не ломая их, сложить контур некоторого прямоугольника?
Задача
116570
(#11.8)
|
|
Сложность: 4- Классы: 10,11
|
Даны положительные числа b и c. Докажите неравенство (b – c)2011(b + c)2011(c – b)2011 ≥ (b2011 – c2011)(b2011 + c2011)(c2011 – b2011).
Задача
116547
(#10.8)
|
|
Сложность: 4 Классы: 8,9
|
Прямую палку длиной 2 метра распилили на N палочек, длина каждой из которых выражается целым числом сантиметров. При каком наименьшем N можно гарантировать, что, использовав все получившиеся палочки, можно, не ломая их, сложить контур некоторого прямоугольника?
Страница:
<< 4 5 6 7 8 9
10 >> [Всего задач: 48]