ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Квадрат 4×4 разделён на 16 клеток. Раскрасьте эти клетки в чёрный и белый цвета так, чтобы у каждой чёрной клетки было три белых соседа, а у каждой белой клетки был ровно один чёрный сосед. (Соседними считаются клетки, имеющие общую сторону.)

Вниз   Решение


Существуют ли два последовательных натуральных числа, сумма цифр каждого из которых делится на 7?

Вверх   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 225]      



Задача 32800

Темы:   [ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 7,8

Очень скучно смотреть на черно-белый циферблат, поэтому Клайв ровно в полдень закрасил число 12 красным цветом и решил через каждые 57 часов закрашивать текущий час в красный цвет.
  а) Сколько чисел на циферблате окажутся покрашенными?
  б) Сколько окажется красных чисел, если Клайв будет красить их каждый 1913-й час?

Прислать комментарий     Решение

Задача 32801

Темы:   [ Задачи на движение ]
[ Уравнения в целых числах ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 7,8,9

Когда Клайв поступил в математическую школу, ему подарили новые часы, на которых была ещё секундная стрелка.
Сколько раз за сутки все три стрелки на таких часах совпадут?

Прислать комментарий     Решение

Задача 32806

Тема:   [ Шахматная раскраска ]
Сложность: 3
Классы: 7,8,9

а) Из обычной шахматной доски 8 на 8 вырезали клетки с5 и g2. Можно ли то, что осталось, замостить доминошками 1 на 2?
  б) Тот же вопрос, если вырезали клетки с6 и g2.
Прислать комментарий     Решение


Задача 32818

Темы:   [ Делимость чисел. Общие свойства ]
[ Арифметическая прогрессия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

а) Можно ли разложить 20 монет достоинством в 1, 2, 3, ..., 19, 20 мунгу по трём карманам так, чтобы в каждом кармане оказалась одинаковая сумма денег?

б) А если добавить еще один тугрик? (Как известно, один тугрик равен ста мунгу.)

Прислать комментарий     Решение

Задача 32819

Тема:   [ Взвешивания ]
Сложность: 3
Классы: 7,8

Фальшивомонетчик Вася изготовил четыре монеты достоинством 1, 3, 4, 7 квача, которые должны весить 1, 3, 4, 7 граммов соответственно. Но одну из этих монет он сделал некачественно – с неправильным весом. Как за два взвешивания на чашечных весах без гирек определить "неправильную" монету?
Прислать комментарий     Решение


Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 225]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .