ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 176]      



Задача 56951  (#05.101)

Тема:   [ Подерный (педальный) треугольник ]
Сложность: 5
Классы: 9

Внутри остроугольного треугольника ABC дана точка P. Опустив из нее перпендикуляры PA1, PB1 и PC1 на стороны, получим  $ \triangle$A1B1C1. Проделав для него ту же операцию, получим  $ \triangle$A2B2C2, а затем  $ \triangle$A3B3C3. Докажите, что  $ \triangle$A3B3C3 $ \sim$ $ \triangle$ABC.
Прислать комментарий     Решение


Задача 56952  (#05.102)

Тема:   [ Подерный (педальный) треугольник ]
Сложность: 6
Классы: 9

Треугольник ABC вписан в окружность радиуса R с центром O. Докажите, что площадь подерного треугольника точки P относительно треугольника ABC (см. задачу 5.99) равна  $ {\frac{1}{4}}$$ \left\vert\vphantom{1-\frac{d^2}{R^2}}\right.$1 - $ {\frac{d^2}{R^2}}$$ \left.\vphantom{1-\frac{d^2}{R^2}}\right\vert$SABC, где d = PO.
Прислать комментарий     Решение


Задача 56953  (#05.103)

Тема:   [ Подерный (педальный) треугольник ]
Сложность: 6
Классы: 9

Из точки P опущены перпендикуляры PA1, PB1 и PC1 на стороны треугольника ABC. Прямая la соединяет середины отрезков PA и B1C1. Аналогично определяются прямые lb и lc. Докажите, что эти прямые пересекаются в одной точке.
Прислать комментарий     Решение


Задача 56954  (#05.104)

Темы:   [ Подерный (педальный) треугольник ]
[ Изогональное сопряжение ]
Сложность: 6
Классы: 9

а) Точки P1 и P2 изогонально сопряжены относительно треугольника ABC. Докажите, что их подерные окружности (описанные окружности подерных треугольников (см. задачу 5.99)) совпадают, причем центром этой окружности является середина отрезка P1P2.
б) Докажите, что это утверждение останется верным, если из точек P1 и P2 проводить не перпендикуляры к сторонам, а прямые под данным (ориентированным) углом.
в) Докажите, что стороны подерного треугольника точки P1 перпендикулярны прямым, соединяющим точку P2 с вершинами треугольника ABC.
Прислать комментарий     Решение


Задача 56955  (#05.115B)

Темы:   [ Подерный (педальный) треугольник ]
[ Изогональное сопряжение ]
Сложность: 6
Классы: 9

Даны два треугольника ABC и A1B1C1. Перпендикуляры, опущенные из точек A, B, C на прямые B1C1, C1A1, A1B1 пересекаются в одной точке. Докажите, что тогда перпендикуляры, опущенные из точек A1, B1, C1 на прямые BC, CA, AB тоже пересекаются в одной точке (Штейнер).
Прислать комментарий     Решение


Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 176]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .