ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Фольклор

У прямого кругового конуса длина образующей равна 5, а диаметр равен 8.

Найдите наибольшую площадь треугольного сечения, которая может получиться при пересечении конуса плоскостью.

Вниз   Решение


Коттеджный посёлок имеет размеры 𝑛 × 𝑚 одинаковых квадратных участков. Собственники по очереди начали огораживать свои участки забором. Стоимость части забора между любыми двумя соседними участками составила 10 тысяч рублей и её полностью нёс тот сосед, который огораживал свой участок первым (расходы не делились между соседями, то есть некоторые могли вообще ничего не потратить). В итоге все участки оказались огорожены забором с четырёх сторон. Могло ли оказаться, что в итоге поровну жителей потратило на забор по 0, 10, 30 и 40 тысяч рублей, а остальные — по 20 тысяч?

ВверхВниз   Решение


У одного островного племени есть обычай – во время ритуального танца шаман подбрасывает высоко вверх три тонких прямых прута одинаковой длины, связанных в подобие буквы П. Соседние прутья связаны короткой ниткой и поэтому свободно вращаются друг относительно друга. Прутья падают на песок, образуя случайную фигуру. Если получается самопересечение (первый и третий прутья перекрещиваются), то племя в наступающем году ждут неурожаи и всякие неприятности. Если же самопересечения нет, то год будет удачным – сытным и счастливым. Найдите вероятность того, что на 2017 год прутья напророчат удачу.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 41]      



Задача 58160  (#23.001)

Темы:   [ Четность и нечетность ]
[ Произвольные многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8

Может ли прямая пересекать (во внутренних точках) все стороны невыпуклого:
  а) (2n+1)-угольника;  б) 2n-угольника?

Прислать комментарий     Решение

Задача 58161  (#23.002)

Темы:   [ Четность и нечетность ]
[ Ломаные ]
Сложность: 3+
Классы: 7,8

На плоскости дана замкнутая ломаная с конечным числом звеньев. Прямая l пересекает её ровно в 1985 точках.
Докажите, что существует прямая, пересекающая эту ломаную более чем в 1985 точках.

Прислать комментарий     Решение

Задача 58162  (#23.003)

Темы:   [ Треугольники (прочее) ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8

На плоскости лежат три шайбы A, B и C. Хоккеист бьёт по одной из шайб так, чтобы она прошла между двумя другими и остановилась в некоторой точке. Могут ли все шайбы вернуться на свои места после25 ударов?

Прислать комментарий     Решение

Задача 31075  (#23.004)

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 6,7,8

На клетчатом листе закрасили 25 клеток. Может ли каждая из них иметь нечётное число закрашенных соседей?

Прислать комментарий     Решение

Задача 58164  (#23.005)

Темы:   [ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 7,8

Окружность разбита точками на 3k дуг: по k дуг длины 1, 2 и 3. Докажите, что найдутся две диаметрально противоположные точки деления.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .