Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 43]
|
|
Сложность: 3+ Классы: 9,10,11
|
Известно, что число a положительно, а неравенство 10 < ax < 100 имеет ровно пять решений в натуральных числах.
Сколько таких решений может иметь неравенство 100 < ax < 1000?
|
|
Сложность: 3+ Классы: 9,10,11
|
Четырёхугольник ABCD – вписанный, AB = AD. На стороне BC взята точка M, а на стороне CD – точка N так, что угол MAN равен половине угла BAD.
Докажите, что MN = BM + ND.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
У Пети есть n³ белых кубиков 1×1×1. Он хочет сложить из них куб n×n×n, снаружи полностью белый. Какое наименьшее число граней кубиков должен закрасить Вася, чтобы помешать Пете? Решите задачу при a) n = 3; б) n = 1000.
|
|
Сложность: 3+ Классы: 9,10
|
Бильярдный стол имеет вид прямоугольника 2×1, в углах и на серединах больших сторон которого расположены лузы. Какое наименьшее число шаров надо расположить внутри прямоугольника, чтобы каждая луза находилась на одной линии с некоторыми двумя шарами?
|
|
Сложность: 3+ Классы: 9,10
|
Докажите, что можно найти такие 100 пар целых чисел так, что в десятичной записи каждого числа все цифры не меньше 6 и произведение чисел каждой пары – тоже число, где все цифры не меньше 6.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 43]