ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Доказать, что для любого натурального n справедливо соотношение: ![]() ![]() На сторонах угла AOB от вершины O отложены отрезки OA и OB, причем OA > OB. На отрезке OA взята точка M, на продолжении отрезка OB — точка N так, что AM = BN = x. Найти значение x, при котором отрезок MN имеет наименьшую длину. ![]() ![]() |
Страница: << 1 2 3 >> [Всего задач: 15]
Вокруг цилиндрической колонны высотой 20 метров и диаметра 3 метра обвита узкая лента, которая поднимается от подножия до вершины семью полными витками. Какова длина ленты?
На доске записаны числа: 4, 14, 24, ... , 94, 104. Можно ли стереть сначала одно число из записанных, потом стереть ещё два, потом – ещё три, и, наконец, стереть ещё четыре числа так, чтобы после каждого стирания сумма оставшихся на доске чисел делилась на 11?
Найдите наименьшее положительное значение x + y, если (1 + tg x)(1 + tg y) = 2.
Внутри прямоугольного треугольника АВС выбрана произвольная точка Р, из которой опущены перпендикуляры PK и РМ на катеты АС и ВС соответственно. Прямые АР и ВР пересекают катеты в точках A' и B' соответственно. Известно, что SAPB' : SKPB' = m. Найдите SMPA' : SBPA'.
Существуют ли такие значения a и b, при которых уравнение х4 – 4х3 + 6х² + aх + b = 0 имеет четыре различных действительных корня?
Страница: << 1 2 3 >> [Всего задач: 15] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |