Страница: 1 [Всего задач: 5]
Задача
78292
(#1)
|
|
Сложность: 3 Классы: 8,9,10
|
Проведём в выпуклом многоугольнике некоторые диагонали так, что никакие две из
них не пересекаются (из одной вершины могут выходить несколько диагоналей).
Доказать, что найдутся по крайней мере две вершины многоугольника, из которых
не проведено ни одной диагонали.
Задача
78293
(#2)
|
|
Сложность: 4- Классы: 9,10
|
Как надо расположить числа 1, 2, ..., 1962 в последовательности
a1, a2, ..., a1962, чтобы сумма |a1 – a2| + |a2 – a3| + ... + |a1961 – a1962| + |a1962 – a1| была наибольшей?
Задача
78294
(#3)
|
|
Сложность: 3+ Классы: 9,10
|
В окружность вписан неправильный n-угольник, который при повороте окружности около центра на некоторый угол α ≠ 2π совмещается сам с собой. Доказать, что n – число составное.
Задача
78295
(#4)
|
|
Сложность: 4- Классы: 8,9,10
|
Из чисел
x1,
x2,
x3,
x4,
x5 можно образовать десять попарных
сумм; обозначим их через
a1,
a2, ...,
a10. Доказать, что зная
числа
a1,
a2, ...,
a10 (но не зная, разумеется, суммой каких
именно двух чисел является каждое из них), можно восстановить числа
x1,
x2,
x3,
x4,
x5.
Задача
78296
(#5)
|
|
Сложность: 4+ Классы: 9,10
|
Две окружности
O1 и
O2 пересекаются в точках
M и
P. Обозначим через
MA хорду окружности
O1, касающуюся окружности
O2 в точке
M, а через
MB — хорду окружности
O2, касающуюся окружности
O1 в точке
M. На
прямой
MP отложен отрезок
PH =
MP. Доказать, что четырёхугольник
MAHB можно
вписать в окружность.
Страница: 1 [Всего задач: 5]