ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Продолжения сторон AD и BC выпуклого четырехугольника ABCD пересекаются в точке O; M и N — середины сторон AB и CD, P и Q — середины диагоналей AC и BD. Докажите, что: а) SPMQN = | SABD - SACD|/2; б) SOPQ = SABCD/4. ![]() ![]() В остроугольном треугольнике ABC проведены высоты AD и CE. Точки M и N – основания перпендикуляров, опущенных на прямую DE из точек A и C соответственно. Докажите, что ME = DN. ![]() ![]() ![]() Дана трапеция ABCD с основаниями AD = a и BC = b. Точки M и N лежат на сторонах AB и CD соответственно, причём отрезок MN параллелен основаниям трапеции. Диагональ AC пересекает этот отрезок в точке O. Найдите MN, если известно, что площади треугольников AMO и CNO равны. ![]() ![]() |
Страница: 1 2 >> [Всего задач: 6]
Определите, с какой стороны расположен руль у изображенного на рисунке автомобиля.
Восстановите прямоугольный треугольник ABC (∠C = 90°) по вершинам A, C и точке на биссектрисе угла B .
Диагонали выпуклого четырёхугольника делят его на четыре подобных треугольника. Докажите, что его можно разрезать на два равных треугольника.
Назовём два неравных треугольника похожими, если можно обозначить их ABC и A'B'C' так, чтобы выполнялись равенства AB = A'B', AC = A'C' и
Страница: 1 2 >> [Всего задач: 6] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |