ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Турниры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Внутри ромба АВСD выбрана точка N так, что треугольник ВСN – равносторонний. Биссектриса BL треугольника ABN пересекает диагональ АС в точке K. Докажите, что точки K, N и D лежат на одной прямой. ![]() |
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1703]
Доказать, что уравнение m!·n! = k! имеет бесконечно много таких решений, что m, n и k – натуральные числа, большие единицы.
Бильярд имеет форму прямоугольного треугольника, один из острых углов которого равен 30°. Из этого угла по медиане противоположной стороны выпущен шар (материальная точка). Доказать, что после восьми отражений (угол падения равен углу отражения) он попадёт в лузу, находящуюся в вершине угла 60°.
Найти все такие натуральные k, которые можно представить в виде суммы двух взаимно простых чисел, отличных от 1.
Биссектрисы BD и CE треугольника ABC пересекаются в точке O.
Посёлок построен в виде квадрата 3 квартала на 3 квартала (кварталы – квадраты со стороной b, всего 9 кварталов). Какой наименьший путь должен пройти асфальтоукладчик, чтобы заасфальтировать все улицы, если он начинает и кончает свой путь в угловой точке A? (Стороны квадрата – тоже улицы).
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1703] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |