ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Турниры:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 119 120 121 122 123 124 125 >> [Всего задач: 1703]      



Задача 98217

Темы:   [ Исследование квадратного трехчлена ]
[ Рекуррентные соотношения (прочее) ]
[ Ограниченность, монотонность ]
Сложность: 3+
Классы: 9,10

Последовательность натуральных чисел  a1, a2, ..., an, ...  такова, что для каждого n уравнение  an+2x² + an+1x + an = 0  имеет действительный корень. Может ли число членов этой последовательности быть
  а) равным 10;
  б) бесконечным?

Прислать комментарий     Решение

Задача 98218

Темы:   [ Симметричная стратегия ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8,9

Имеется шоколадка с пятью продольными и восемью поперечными углублениями, по которым её можно ломать (всего получается  9·6 = 54  дольки). Играют двое, ходят по очереди. Играющий за свой ход отламывает от шоколадки полоску ширины 1 и съедает её. Другой играющий за свой ход делает то же самое с оставшейся частью, и т. д. Тот, кто разламывает полоску ширины 2 на две полоски ширины 1, съедает одну из них, а другую съедает его партнер. Докажите, что начинающий игру может действовать таким образом, что ему достанется по крайней мере на 6 долек больше, чем второму.

Прислать комментарий     Решение

Задача 98219

Темы:   [ Инварианты ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8,9,10

10 фишек стоят на столе по кругу. Сверху фишки красные, снизу – синие. Разрешены две операции:
  а) перевернуть четыре фишки, стоящие подряд;
  б) перевернуть четыре фишки, расположенные так:  ××0××  (× – фишка, входящая в четвёрку, 0 – не входящая).
Удастся ли, используя несколько раз разрешённые операции, перевернуть все фишки синей стороной вверх?
Прислать комментарий     Решение


Задача 98220

Темы:   [ Уравнения в целых числах ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Существует ли бесконечное число таких троек целых чисел x, y, z, что   x² + y² + z² = x³ + y³ + z³?

Прислать комментарий     Решение

Задача 98221

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
[ Рациональные и иррациональные числа ]
[ Обыкновенные дроби ]
[ Уравнения с модулями ]
[ Обратный ход ]
Сложность: 3+
Классы: 8,9,10

Автор: Шабат Г.Б.

{an} – последовательность чисел между 0 и 1, в которой следом за x идёт  1 – |1 – 2x|.
  а) Докажите, что если a1 рационально, то последовательность, начиная с некоторого места, периодическая.
  б) Докажите, что если последовательность, начиная с некоторого места, периодическая, то a1 рационально.

Прислать комментарий     Решение

Страница: << 119 120 121 122 123 124 125 >> [Всего задач: 1703]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .