Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 41]
|
|
Сложность: 3+ Классы: 10,11
|
В треугольнике ABC взяли точку M так, что что радиусы описанных окружностей треугольников AMC, BMC и BMA не меньше радиуса описанной окружности треугольника ABC. Докажите, что все четыре радиуса равны.
Вася пишет на доске квадратное уравнение ax² + bx + c = 0 с натуральными коэффициентами a, b, c. После этого Петя, если хочет, может заменить один или два знака "+" на "–". Если у получившегося уравнения оба корня целые, то выигрывает Вася, если же корней нет или хотя бы один из них нецелый – Петя. Может ли Вася подобрать коэффициенты уравнения так, чтобы наверняка выиграть у Пети?
Дан треугольник ABC. В нём R – радиус описанной окружности,
r – радиус вписанной окружности, a – длина наибольшей стороны, h – длина наименьшей высоты. Докажите, что R/r > a/h.
|
|
Сложность: 3+ Классы: 10,11
|
Дана треугольная пирамида ABCD. В ней R – радиус описанной
сферы, r – радиус вписанной сферы, a – длина наибольшего ребра, h – длина наименьшей высоты (на какую-то грань). Докажите, что R/r > a/h.
|
|
Сложность: 3+ Классы: 10,11
|
Можно ли поверхность куба оклеить без пропусков и наложений тремя треугольниками?
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 41]