Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 41]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Все виды растений России были занумерованы подряд числами от 2 до 20000 (числа идут без пропусков и повторений). Для каждой пары видов растений запомнили наибольший общий делитель их номеров, а сами номера были забыты (в результате сбоя компьютера). Можно ли для каждого вида растений восстановить его номер?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
2003 доллара разложили по кошелькам, а кошельки разложили по карманам. Известно, что всего кошельков больше, чем долларов в любом кармане. Верно ли, что карманов больше, чем долларов в каком-нибудь кошельке? (Класть кошельки один в другой не разрешается.)
Двое играющих по очереди красят стороны n-угольника. Первый может покрасить сторону, которая граничит с нулём или двумя покрашенными сторонами, второй – сторону, которая граничит с одной покрашенной стороной. Проигрывает тот, кто не может сделать хода. При каких n второй может выиграть, как бы ни играл первый?
На боковых сторонах AB и BC равнобедренного треугольника ABC взяты точки K и L соответственно, так что AK + LC = KL. Из середины M отрезка KL провели прямую, параллельную BC, и эта прямая пересекла сторону AC в точке N. Найдите величину угла KNL.
|
|
Сложность: 3+ Классы: 9,10,11
|
Имеется 100 палочек, из которых можно сложить 100-угольник.
Может ли случиться, что ни из какого меньшего числа этих палочек нельзя сложить многоугольник?
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 41]