ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Клетки доски 7×7 окрашены в шахматном порядке так, что углы окрашены в чёрный цвет. Разрешается перекрашивать в противоположный цвет любые две соседние клетки. Можно ли с помощью таких операций перекрасить всю доску в белый цвет?

Вниз   Решение


В набор "Юный геометр" входит несколько плоских граней, из которых можно собрать выпуклый многогранник. Юный геометр Саша разделил эти грани на две кучки. Могло ли случиться, что из граней каждой кучки тоже можно собрать выпуклый многогранник?
(И в начале, и в конце каждая из граней набора должна являться гранью многогранника.)

ВверхВниз   Решение


На плоскости нарисовано несколько прямых (не меньше двух), никакие две из которых не параллельны и никакие три не проходят через одну точку. Докажите, что среди частей, на которые эти прямые делят плоскость, найдется хотя бы один угол.

ВверхВниз   Решение


Имеется два правильных пятиугольника с одной общей вершиной. Вершины каждого пятиугольника нумеруются по часовой стрелке цифрами от 1 до 5, причём в общей вершине ставится цифра 1. Вершины с одинаковыми номерами соединены прямыми. Доказать, что полученные четыре прямые пересекаются в одной точке.

ВверхВниз   Решение


Автор: Ботин Д.А.

Один сапфир и два топаза
ценней, чем изумруд, в три раза.
А семь сапфиров и топаз
его ценнее в восемь раз.
Определить мы просим Вас,
сапфир ценнее иль топаз?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 103794  (#1)

Темы:   [ Десятичная система счисления ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 6,7,8

Натуральное число умножили последовательно на каждую из его цифр. Получилось 1995. Найдите исходное число.

Прислать комментарий     Решение

Задача 103795  (#2)

Темы:   [ Текстовые задачи (прочее) ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 7

Автор: Ботин Д.А.

Один сапфир и два топаза
ценней, чем изумруд, в три раза.
А семь сапфиров и топаз
его ценнее в восемь раз.
Определить мы просим Вас,
сапфир ценнее иль топаз?

Прислать комментарий     Решение

Задача 103796  (#3)

Темы:   [ Наименьшая или наибольшая площадь (объем) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2+
Классы: 7

Фигура на рисунке составлена из квадратов. Найдите сторону левого нижнего, если сторона самого маленького равна 1.

Прислать комментарий     Решение


Задача 103797  (#4)

Темы:   [ Арифметические действия. Числовые тождества ]
[ Ребусы ]
Сложность: 2
Классы: 6

Расставьте скобки так, чтобы получилось верное равенство:

1 - 2 . 3 + 4 + 5 . 6 . 7 + 8 . 9 = 1995.

Прислать комментарий     Решение


Задача 103798  (#5)

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
[ Инварианты ]
Сложность: 3-
Классы: 7,8,9

Из натурального числа вычли сумму его цифр, из полученного числа снова вычли сумму его (полученного числа) цифр и т.д. После одиннадцати таких вычитаний получился нуль. С какого числа начинали?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .