ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В ребусе $\text{ТУР}+\text{ТУР}+\text{ТУР}+...+\text{ТУР}=\text{ТУРЛОМ}$ одинаковые буквы заменяют одинаковые цифры, разные буквы заменяют разные цифры. Часть одинаковых слагаемых мы заменили многоточием. Сколько всего может быть ТУРов, чтобы ребус имел решение? Найдите наименьшее и наибольшее количества.

Вниз   Решение


Сумма нескольких чисел равна 1. Может ли сумма их квадратов быть меньше 0,1?

ВверхВниз   Решение


а) Назовите 10 первых натуральных чисел, имеющих нечётное число делителей (в число делителей включается единица и само число).

б) Попробуйте сформулировать и доказать правило, позволяющее найти следующие такие числа.

ВверхВниз   Решение


Четыре дома расположены по окружности. Где надо вырыть колодец, чтобы сумма расстояний от домов до колодца была наименьшей?

ВверхВниз   Решение


В спорткомплексе 99 шкафчиков с номерами от 01 до 99. На браслете с ключом цифры написаны по образцу на рисунке:

По браслету непонятно, где низ, а где верх, и поэтому иногда нельзя однозначно определить номер своего шкафчика (например, браслеты, соответствующие номерам 10 и 01, выглядят одинаково). Мише выдали один из ключей. В скольких случаях из 99 он, посмотрев на браслет, не сможет однозначно определить номер своего шкафчика?

ВверхВниз   Решение


Разделим каждое четырёхзначное число на сумму его цифр. Какой самый большой результат может получиться?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 107722  (#1)

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 6,7,8

На протяжении некоторого года (от 1 января до 31 декабря включительно) количество вторников было равно количеству четвергов. Следует ли из этого, что и количество сред было такое же? Рассмотрите два случая:
а) в году было 365 дней,
б} в году было 366 дней.
Прислать комментарий     Решение


Задача 107723  (#2)

Темы:   [ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 7,8,9

Все натуральные числа от 1 до 1000 включительно разбиты на две группы: чётные и нечётные.
В какой из групп сумма всех цифр, используемых для записи чисел, больше и на сколько?

Прислать комментарий     Решение

Задача 107724  (#3)

Темы:   [ Уравнения в целых числах ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

Известно, что  х = 2а5 = 5b² > 0,  числа а и b – целые. Каково наименьшее возможное значение х?

Прислать комментарий     Решение

Задача 107725  (#4)

Темы:   [ Элементарные (основные) построения циркулем и линейкой ]
[ Построение треугольников по различным элементам ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 7,8,9,10

Даны прямая и точка вне неё. Как с помощью циркуля и линейки построить прямую, параллельную данной прямой и проходящую через данную точку, проведя при этом возможно меньшее число линий (окружностей и прямых), так что последняя проведённая линия — это искомая прямая? Какого числа линий Вам удалось добиться?
Прислать комментарий     Решение


Задача 107727  (#6)

Темы:   [ Десятичная система счисления ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 8,9,10

Разделим каждое четырёхзначное число на сумму его цифр. Какой самый большой результат может получиться?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .