Страница:
<< 1 2
3 4 5 >> [Всего задач: 23]
|
|
Сложность: 3+ Классы: 7,8,9
|
Пусть a, b, c – такие целые неотрицательные числа, что
28a + 30b + 31c = 365. Докажите, что a + b + c = 12.
|
|
Сложность: 3+ Классы: 8,9,10
|
Квадрат со стороной 1 разрезали на прямоугольники, у каждого из которых отметили одну сторону.
Докажите, что сумма длин всех отмеченных сторон не может быть меньше 1.
В остроугольном треугольнике ABC провели высоты AD и CE. Построили квадрат ACPQ и прямоугольники CDMN и AEKL, у которых AL = AB и
CN = CB. Докажите, что площадь квадрата ACPQ равна сумме площадей прямоугольников AEKL и CDMN.
|
|
Сложность: 4- Классы: 7,8,9
|
Дорога протяженностью 1 км полностью освещена фонарями, причем каждый
фонарь освещает отрезок дороги длиной 1 м. Какое наибольшее
количество фонарей может быть на дороге, если известно, что после
выключения любого фонаря дорога будет освещена уже не полностью?
|
|
Сложность: 4- Классы: 10,11
|
Про непрерывную функцию
f известно, что:
- f определена на всей числовой прямой;
- f в каждой точке имеет производную (и, таким образом, график f в
каждой точке имеет единственную касательную);
- график функции f не содержит точек, у которых одна из координат
рациональна, а другая — иррациональна.
Следует ли отсюда, что график f — прямая?
Страница:
<< 1 2
3 4 5 >> [Всего задач: 23]