ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан набор одинаковых правильных пятиугольников, при вершинах каждого из которых записаны натуральные числа от 1 до 5, как показано на рисунке. Пятиугольники можно поворачивать и переворачивать. Их сложили в стопку (вершина к вершине), и оказалось, что при каждой из пяти вершин суммы чисел одинаковы. Сколько пятиугольников могло быть в этой стопке?

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 [Всего задач: 40]      



Задача 109439

Темы:   [ Задачи на максимум и минимум (прочее) ]
[ Прямоугольные параллелепипеды ]
[ Углы между прямыми и плоскостями ]
[ Вспомогательные подобные треугольники ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Неравенство Коши ]
Сложность: 4
Классы: 10,11

Основанием прямоугольного параллелепипеда АВСDA1B1C1D1 является квадрат АВСD.
Найдите наибольшую возможную величину угла между прямой BD1 и плоскостью ВDС1.

Прислать комментарий     Решение

Задача 109440

Темы:   [ Смешанные уравнения и системы уравнений ]
[ Монотонность, ограниченность ]
Сложность: 4
Классы: 10,11

Решите уравнение:  (x³ – 2)(2sin x – 1) + (2x³ – 4) sin x = 0.

Прислать комментарий     Решение

Задача 109441

Темы:   [ Принцип Дирихле (прочее) ]
[ Задачи с ограничениями ]
Сложность: 4
Классы: 8,9,10,11

Даны таблица 100×100 клеток и N фишек. Рассматриваются все такие расстановки фишек в клетки таблицы, что никакие две фишки не стоят в соседних клетках. При каком наибольшем N в каждой из этих расстановок можно найти хотя бы одну фишку, от перемещения которой в соседнюю клетку заданное условие не нарушится? (Соседними считаются клетки, имеющие общую сторону.)

Прислать комментарий     Решение

Задача 109453

Темы:   [ Тригонометрические неравенства ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 4
Классы: 10,11

Пусть α и β – острые углы такие, что sin2α + sin2β < 1 . Докажите, что sin2α + sin2β < sin2(α + β) .
Прислать комментарий     Решение


Задача 109460

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Подсчет двумя способами ]
[ Правильные многоугольники ]
[ Пятиугольники ]
Сложность: 4
Классы: 7,8,9,10

Дан набор одинаковых правильных пятиугольников, при вершинах каждого из которых записаны натуральные числа от 1 до 5, как показано на рисунке. Пятиугольники можно поворачивать и переворачивать. Их сложили в стопку (вершина к вершине), и оказалось, что при каждой из пяти вершин суммы чисел одинаковы. Сколько пятиугольников могло быть в этой стопке?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 [Всего задач: 40]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .