ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 109478

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Текстовые задачи (прочее) ]
Сложность: 2
Классы: 5,6,7,8

Петя и Вася участвовали в велогонке. Все участники стартовали одновременно и показали на финише различное время. Петя финишировал сразу после Васи и оказался на десятом месте. Сколько человек участвовало в гонке, если Вася был пятнадцатым с конца?

Прислать комментарий     Решение

Задача 109481

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Задачи на движение ]
Сложность: 2
Классы: 5,6,7,8

Коля и его сестра Маша пошли в гости. Пройдя четверть пути, Коля вспомнил, что они забыли дома подарок и повернул обратно, а Маша пошла дальше. Маша пришла в гости через 20 минут после выхода из дома. На сколько минут позже пришёл в гости Коля, если известно, что они все время шли с одинаковыми скоростями?

Прислать комментарий     Решение

Задача 109480

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 2+
Классы: 5,6,7,8

Четырехзначное число начинается с цифры 6. Эту цифру переставили в конец числа. Полученное число оказалось на 1152 меньше исходного. Найдите исходное число.
Прислать комментарий     Решение


Задача 109479

Темы:   [ Разные задачи на разрезания ]
[ Круг, сектор, сегмент и проч. ]
Сложность: 3-
Классы: 5,6,7,8

Разделите круг тремя прямолинейными разрезами на: а) 4 части; б) 5 частей; в) 6 частей; г) 7 частей.
Прислать комментарий     Решение


Задача 109482

Тема:   [ Взвешивания ]
Сложность: 3-
Классы: 5,6,7,8

На столе в ряд лежат четыре монеты. Среди них обязательно есть как настоящие, так и фальшивые (которые легче настоящих). Известно, что любая настоящая монета лежит левее любой фальшивой. Как за одно взвешивание на чашечных весах без гирь определить тип каждой монеты, лежащей на столе?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .