Страница: 1
2 >> [Всего задач: 6]
|
|
Сложность: 3- Классы: 7,8,9
|
Из натурального числа вычли сумму его цифр и получили
2007. Каким могло быть исходное число?
|
|
Сложность: 3- Классы: 7,8,9
|
Числа a, b и c отличны от нуля и выполняются равенства:
a + b/c = b + c/a = c + a/b = 1. Докажите, что ab + bc + ca = 0.
Середину более длинной боковой стороны прямоугольной трапеции соединили с вершинами трапеции. При этом трапеция разделилась на три равнобедренных треугольника. Найдите величину острого угла трапеции.
На стороне
AC треугольника
ABC взята точка
D так,
что
AD:DC=1
:2
. Докажите, что у треугольников
ADB и
CDB есть
по равной медиане.
|
|
Сложность: 3+ Классы: 7,8,9
|
На некоторых клетках шахматной доски лежит по конфете. Известно, что в каждой строке, в каждом столбце и в каждой диагонали (любой длины, даже состоящей из одной клетки) лежит чётное количество конфет (возможно, ни одной). Какое максимальное количество конфет может лежать на доске?
Страница: 1
2 >> [Всего задач: 6]