ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Сфера с центром в плоскости основания ABC тетраэдра SABC проходит через вершины A , B и C и вторично пересекает ребра SA , SB и SC в точках A1 , B1 и C1 соответственно. Плоскости, касающиеся сферы в точках A1 , B1 и C1 , пересекаются в точке O . Докажите, что O – центр сферы, описанной около тетраэдра SA1B1C1 . ![]() |
Страница: << 1 2 [Всего задач: 8]
a и b – такие различные натуральные числа, что
ab(a + b) делится на a² + ab + b². Докажите, что |a – b| >
В стране 2001 город, некоторые пары городов соединены дорогами, причём из каждого города выходит хотя бы одна дорога и нет города, соединённого дорогами со всеми остальными. Назовём множество городов D доминирующим, если каждый не входящий в D город соединён дорогой с одним из городов множества D. Известно, что в каждом доминирующем множестве хотя бы k городов. Докажите, что страну можно разбить на 2001 – k республик так, что никакие два города из одной республики не будут соединены дорогой.
Страница: << 1 2 [Всего задач: 8] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |