ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Числа от 1 до 999999 разбиты на две группы: в первую отнесено каждое число, для которого ближайшим к нему квадратом является квадрат нечётного числа, во вторую – числа, для которых ближайшими являются квадраты чётных чисел. В какой из групп сумма чисел больше?

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 109750  (#01.5.9.6)

Темы:   [ Теория графов (прочее) ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 7,8,9

В компании из  2n + 1 человека для любых n человек найдётся отличный от них человек, знакомый с каждым из них.
Докажите, что в этой компании есть человек, знающий всех.

Прислать комментарий     Решение

Задача 108141  (#01.5.9.7)

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Вспомогательные подобные треугольники ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанные и описанные окружности ]
[ Вписанный угол равен половине центрального ]
Сложность: 4-
Классы: 8,9,10

На большей стороне AC треугольника ABC взята точка N так, что серединные перпендикуляры к отрезкам AN и NC пересекают стороны AB и BC в точках K и M соответственно. Докажите, что центр O описанной окружности треугольника ABC лежит на описанной окружности треугольника KBM.

Прислать комментарий     Решение

Задача 109752  (#01.5.9.8)

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ НОД и НОК. Взаимная простота ]
[ Принцип крайнего (прочее) ]
Сложность: 5-
Классы: 8,9,10

Автор: Джукич Д.

Найдите все такие нечётные натуральные  n > 1,  что для любых взаимно простых делителей a и b числа n число  a + b – 1  также является делителем n.

Прислать комментарий     Решение

Задача 109745  (#01.5.10.1)

Темы:   [ Разбиения на пары и группы; биекции ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Четность и нечетность ]
Сложность: 4
Классы: 7,8,9

Числа от 1 до 999999 разбиты на две группы: в первую отнесено каждое число, для которого ближайшим к нему квадратом является квадрат нечётного числа, во вторую – числа, для которых ближайшими являются квадраты чётных чисел. В какой из групп сумма чисел больше?

Прислать комментарий     Решение

Задача 109738  (#01.5.10.2)

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Объединение, пересечение и разность множеств ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 4+
Классы: 8,9,10

Автор: Карасев Р.

На прямой выбрано 100 множеств A1, A2, .. , A100 , каждое из которых является объединением 100 попарно непересекающихся отрезков. Докажите, что пересечение множеств A1, A2, .. , A100 является объединением не более 9901 попарно непересекающихся отрезков (точка также считается отрезком).
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .