Страница: 1
2 >> [Всего задач: 8]
Задача
109886
(#96.4.10.1)
|
|
Сложность: 3+ Классы: 9,10
|
Докажите, что если a, b, c – положительные числа и ab + bc + ca > a + b + c, то a + b + c > 3.
Задача
109887
(#96.4.10.2)
|
|
Сложность: 4+ Классы: 8,9,10
|
Верно ли, что из произвольного треугольника можно вырезать три равные
фигуры, площадь каждой из которых больше четверти площади треугольника?
Задача
108236
(#96.4.10.3)
|
|
Сложность: 4- Классы: 8,9
|
Дан угол с вершиной B. Возьмём произвольную равнобедренную трапецию,
боковые стороны которой лежат на сторонах данного угла. Через две противоположные её вершины проведём касательные к описанной около неё окружности. Через M обозначим точку пересечения этих касательных. Какую фигуру образуют все такие точки M?
Задача
109889
(#96.4.10.4)
|
|
Сложность: 4- Классы: 8,9,10
|
В каждой клетке квадратной таблицы размером n×n клеток (n ≥ 3) записано число 1 или –1. Если взять любые две строки, перемножить числа, стоящие в них друг над другом и сложить n получившихся произведений, то сумма будет равна 0. Докажите, что число n делится на 4.
Задача
109896
(#96.4.10.5)
|
|
Сложность: 3+ Классы: 8,9,10
|
Найдите все натуральные числа, имеющие ровно шесть делителей, сумма которых равна 3500.
Страница: 1
2 >> [Всего задач: 8]