ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите все натуральные числа, имеющие ровно шесть делителей, сумма которых равна 3500.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 109886  (#96.4.10.1)

Темы:   [ Неравенство Коши ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3+
Классы: 9,10

Докажите, что если a, b, c – положительные числа и  ab + bc + ca > a + b + c,  то  a + b + c > 3.

Прислать комментарий     Решение

Задача 109887  (#96.4.10.2)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Неравенства с площадями ]
[ Перегруппировка площадей ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 8,9,10

Верно ли, что из произвольного треугольника можно вырезать три равные фигуры, площадь каждой из которых больше четверти площади треугольника?
Прислать комментарий     Решение


Задача 108236  (#96.4.10.3)

Темы:   [ ГМТ - прямая или отрезок ]
[ Угол между касательной и хордой ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 8,9

Автор: Сонкин М.

Дан угол с вершиной B. Возьмём произвольную равнобедренную трапецию, боковые стороны которой лежат на сторонах данного угла. Через две противоположные её вершины проведём касательные к описанной около неё окружности. Через M обозначим точку пересечения этих касательных. Какую фигуру образуют все такие точки M?

Прислать комментарий     Решение

Задача 109889  (#96.4.10.4)

Темы:   [ Числовые таблицы и их свойства ]
[ Инварианты ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 8,9,10

В каждой клетке квадратной таблицы размером n×n клеток  (n ≥ 3)  записано число 1 или –1. Если взять любые две строки, перемножить числа, стоящие в них друг над другом и сложить n получившихся произведений, то сумма будет равна 0. Докажите, что число n делится на 4.

Прислать комментарий     Решение

Задача 109896  (#96.4.10.5)

Темы:   [ Количество и сумма делителей числа ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9,10

Найдите все натуральные числа, имеющие ровно шесть делителей, сумма которых равна 3500.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .