ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что если 1<a<b<c , то

log a(log a b)+log b (log b c)+log c(log ca)>0.

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 56]      



Задача 109907  (#97.4.11.2)

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Метод координат на плоскости ]
[ Свойства симметрий и осей симметрии ]
[ Метод ГМТ ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4-
Классы: 8,9,10,11

Все вершины треугольника ABC лежат внутри квадрата K . Докажите, что если все их отразить симметрично относительно точки пересечения медиан треугольника ABC , то хотя бы одна из полученных трех точек окажется внутри K .
Прислать комментарий     Решение


Задача 109908  (#97.4.11.3)

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Показательные неравенства ]
[ Доказательство от противного ]
Сложность: 4
Классы: 10,11

Обозначим через S(m) сумму цифр натурального числа m. Докажите, что существует бесконечно много таких натуральных n, что  S(3n) ≥ S(3n+1).

Прислать комментарий     Решение

Задача 109916  (#97.4.11.4)

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Куб ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10

Дан куб со стороной 4. Можно ли целиком оклеить три его грани, имеющие общую вершину, 16 бумажными прямоугольными полосками размером 1×3?

Прислать комментарий     Решение

Задача 109909  (#97.4.11.5)

Темы:   [ Объединение, пересечение и разность множеств ]
[ Математическая логика (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Члены Государственной Думы образовали фракции так, что для любых двух фракций A и B (не обязательно различных) – тоже фракция (через обозначается множество всех членов Думы, не входящих в C ). Докажите, что для любых двух фракций A и B A B – также фракция.
Прислать комментарий     Решение


Задача 109910  (#97.4.11.6)

Темы:   [ Логарифмические неравенства ]
[ Тождественные преобразования ]
Сложность: 4
Классы: 10,11

Докажите, что если 1<a<b<c , то

log a(log a b)+log b (log b c)+log c(log ca)>0.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .