ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

  Старый сапожник Карл сшил сапоги и послал своего сына Ганса на базар – продать их за 25 талеров. На базаре к мальчику подошли два инвалида (один без левой ноги, другой – без правой) и попросили продать им по сапогу. Ганс согласился и продал каждый сапог за 12,5 талеров.
  Когда мальчик пришёл домой и рассказал всё отцу, Карл решил, что инвалидам надо было продать сапоги дешевле – каждому за 10 талеров. Он дал Гансу 5 талеров и велел вернуть каждому инвалиду по 2,5 талера.
  Пока мальчик искал на базаре инвалидов, он увидел, что продают сладости, не смог удержаться и истратил 3 талера на конфеты. После этого он нашёл инвалидов и отдал им оставшиеся деньги – каждому по одному талеру. Возвращаясь домой, Ганс понял, как нехорошо он поступил. Он рассказал всё отцу и попросил прощения. Сапожник сильно рассердился и наказал сына, посадив его в тёмный чулан.
  Сидя в чулане, Ганс задумался. Получалось, что раз он вернул по одному талеру, то инвалиды заплатили за каждый сапог по 11,5 талеров:
12,5 – 1 = 11,5.  Значит, сапоги стоили 23 талера:  2·11,5 = 23.  И 3 талера Ганс истратил на конфеты, следовательно, всего получается 26 талеров:
23 + 3 = 26.  Но ведь было-то 25 талеров! Откуда же взялся лишний талер?

Вниз   Решение


Внутри треугольника ABC взята точка P так, что  ∠ABP = ∠ACP,  а  ∠CBP = ∠CAP. Докажите, что P – точка пересечения высот треугольника ABC.

ВверхВниз   Решение


Автор: Певзнер И.

Вершины 50-угольника делят окружность на 50 дуг, длины которых – 1, 2, 3, ..., 50 в некотором порядке. Известно, что каждая пара "противоположных" дуг (соответствующих противоположным сторонам 50-угольника) отличается по длине на 25. Докажите, что у 50-угольника найдутся две параллельные стороны.

ВверхВниз   Решение


Автор: Храмцов Д.

Докажите, что из произвольного множества трёхзначных чисел, включающего не менее четырёх чисел, взаимно простых в совокупности, можно выбрать четыре числа, также взаимно простых в совокупности.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 110128  (#03.4.10.5)

Темы:   [ Методы решения задач с параметром ]
[ Исследование квадратного трехчлена ]
Сложность: 3
Классы: 9,10,11

Автор: Храмцов Д.

Найдите все x, при которых уравнение  x² + y² + z² + 2xyz = 1  (относительно z) имеет действительное решение при любом y.

Прислать комментарий     Решение

Задача 110129  (#03.4.10.6)

Темы:   [ Касающиеся окружности ]
[ Вписанные и описанные окружности ]
[ Биссектриса делит дугу пополам ]
[ Углы между биссектрисами ]
[ Вспомогательные равные треугольники ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Формула Герона ]
Сложность: 4
Классы: 8,9,10

Пусть A0 – середина стороны BC треугольника ABC, а A' – точка касания с этой стороной вписанной окружности. Построим окружность Ω с центром в A0 и проходящую через A'. На других сторонах построим аналогичные окружности. Докажите, что если Ω касается описанной окружности на дуге BC, не содержащей A, то еще одна из построенных окружностей касается описанной окружности.

Прислать комментарий     Решение

Задача 110130  (#03.4.10.7)

Темы:   [ НОД и НОК. Взаимная простота ]
[ Десятичная система счисления ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4
Классы: 8,9,10

Автор: Храмцов Д.

Докажите, что из произвольного множества трёхзначных чисел, включающего не менее четырёх чисел, взаимно простых в совокупности, можно выбрать четыре числа, также взаимно простых в совокупности.

Прислать комментарий     Решение

Задача 110131  (#03.4.10.8)

Темы:   [ Взвешивания ]
[ Правило произведения ]
[ Теория алгоритмов (прочее) ]
[ Сочетания и размещения ]
Сложность: 4
Классы: 8,9,10,11

В наборе из 17 внешне одинаковых монет две фальшивых, отличающихся от остальных по весу. Известно, что суммарный вес двух фальшивых монет вдвое больше веса настоящей. Всегда ли можно ли определить пару фальшивых монет, совершив пять взвешиваний на чашечных весах без гирь? (Определять, какая из фальшивых монет тяжелее, не требуется.)

Прислать комментарий     Решение

Задача 110120  (#03.4.11.1)

Темы:   [ Простые числа и их свойства ]
[ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 4-
Классы: 8,9,10

Найдите все простые p, для каждого из которых существуют такие натуральные x и y, что  px = y³ + 1.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .