ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Внутри выпуклого четырёхугольника ABCD взята такая точка P, что ∠PBA = ∠PCD = 90°. Точка M – середина стороны AD, причём BM = CM. |
Страница: << 1 2 3 4 5 [Всего задач: 24]
Докажите, что если числа x, y, z при некоторых значениях p и q являются решениями системы
Функция f каждому вектору v (с общим началом в точке O) пространства ставит в соответствие число f(v), причём для любых векторов u, v и любых чисел α, β значение f(αu + βv) не превосходит хотя бы одного из чисел f(u) или f(v). Какое наибольшее количество значений может принимать такая функция?
Внутри выпуклого четырёхугольника ABCD взята такая точка P, что ∠PBA = ∠PCD = 90°. Точка M – середина стороны AD, причём BM = CM.
Команда из n школьников участвует в игре: на каждого из них надевают шапку одного из k заранее известных цветов, а затем по свистку все школьники одновременно выбирают себе по одному шарфу. Команда получает столько очков, у скольких её участников цвет шапки совпал с цветом шарфа (шарфов и шапок любого цвета имеется достаточное количество; во время игры каждый участник не видит своей шапки, зато видит шапки всех остальных, но не имеет права выдавать до свистка никакую информацию). Какое наибольшее число очков команда, заранее наметив план действий каждого её члена, может гарантированно получить:
Страница: << 1 2 3 4 5 [Всего задач: 24] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|