ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Олимпиады и турниры
>>
Олимпиада по геометрии имени И.Ф. Шарыгина
>>
I Олимпиада по геометрии имени И.Ф. Шарыгина (2005 г.)
классы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи При каком наименьшем n существует выпуклый n-угольник, у которого синусы всех углов равны, а длины всех сторон различны? Решение |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 41]
При каком наименьшем n существует выпуклый n-угольник, у которого синусы всех углов равны, а длины всех сторон различны?
Имеются две параллельные прямые p1 и p2.
Точки A и B лежат на p1, а C – на p2. Будем перемещать отрезок BC параллельно самому себе и рассмотрим все треугольники ABC, полученные таким образом. Найдите геометрическое место точек, являющихся в этих треугольниках:
Сторону AB треугольника ABC разделили на n равных частей (точки деления B0 = A, B1, B2, Bn = B), а сторону AC этого треугольника разделили на
Пусть O – центр правильного треугольника ABC. Из произвольной точки P плоскости опустили перпендикуляры на стороны треугольника или их продолжения. Обозначим через M точку пересечения медиан треугольника с вершинами в основаниях этих перпендикуляров. Докажите, что M – середина отрезка PO.
Дан треугольник ABC, все углы которого меньше φ, где φ < 2π/3.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 41] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|