ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
классы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Верно ли, что любые 100 карточек, на которых написано по одной цифре 1, 2 или 3, встречающейся не более чем по 50 раз каждая, можно разложить в один ряд так, чтобы в нём не было фрагментов 11, 22, 33, 123 и 321? Решение |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]
Пётр родился в XIX веке, а его брат Павел – в XX веке. Однажды братья встретились на праздновании своего общего дня рождения. Пётр сказал: "Мой возраст равен сумме цифр года моего рождения". – "Мой тоже", – ответил Павел. На сколько лет Павел младше Петра?
В турнире каждый участник встретился с каждым из остальных один раз. Каждую встречу судил один арбитр, и все арбитры судили разное количество встреч. Игрок Иванов утверждает, что все его встречи судили разные арбитры. То же самое утверждают о себе игроки Петров и Сидоров. Может ли быть, что никто из них не ошибается?
Доска 2010×2011 покрыта доминошками 2×1; некоторые из них лежат горизонтально, некоторые – вертикально.
Сравните между собой наименьшие положительные корни многочленов x2011 + 2011x – 1 и x2011 – 2011x + 1.
Верно ли, что любые 100 карточек, на которых написано по одной цифре 1, 2 или 3, встречающейся не более чем по 50 раз каждая, можно разложить в один ряд так, чтобы в нём не было фрагментов 11, 22, 33, 123 и 321?
Страница: << 1 2 3 4 5 6 >> [Всего задач: 29] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|