Страница: 1 [Всего задач: 5]
|
|
Сложность: 3 Классы: 10,11
|
Кривая на плоскости в некоторой системе координат (декартовой) служит графиком функции
y = sin x. Может ли та же кривая являться графиком функции y = sin 2x
в другой системе координат: если да, то каковы её начало координат и единицы длины на осях (относительно
исходных координат и единиц длины)?
Верно ли, что любые 100 карточек, на которых написано по одной цифре 1, 2 или 3,
встречающейся не более чем по 50 раз каждая, можно разложить в один ряд так, чтобы в нём не
было фрагментов 11, 22, 33, 123 и 321?
|
|
Сложность: 3+ Классы: 9,10,11
|
Внутри треугольника ABC взята такая точка O, что ∠ABO = ∠CAO, ∠BAO = ∠BCO, ∠BOC = 90°. Найдите отношение AC : OC.
При какой перестановке a1, a2, ...,
a2011 чисел 1, 2, ..., 2011 значение выражения
будет наибольшим?
|
|
Сложность: 5 Классы: 10,11
|
По рёбрам треугольной пирамиды ползают четыре жука, при этом каждый жук всё время остаётся только в одной грани (в каждой грани – свой жук). Каждый жук обходит границу своей грани в определённом направлении, причём так, что каждые два жука по общему для них ребру ползут в противоположных направлениях. Докажите, что если скорости (возможно, непостоянные) каждого из жуков всегда больше 1 см/с, то когда-нибудь какие-то два жука обязательно встретятся.
Страница: 1 [Всего задач: 5]