ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Шмаров В.

Пусть ABC – правильный треугольник. На его стороне AC выбрана точка T, а на дугах AB и BC его описанной окружности выбраны точки M и N соответственно так, что  MT || BC  и  NT || AB.  Отрезки AN и MT пересекаются в точке X, а отрезки CM и NT – в точке Y. Докажите, что периметры многоугольников AXYC и XMBNY равны.

   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 116635  (#9.6)

Темы:   [ Процессы и операции ]
[ Квадратные уравнения. Теорема Виета ]
[ Инварианты ]
Сложность: 4-
Классы: 8,9,10

У Пети и Коли в тетрадях записаны по два числа; изначально – это числа 1 и 2 у Пети, 3 и 4 – у Коли. Раз в минуту Петя составляет квадратный трёхчлен f(x), корнями которого являются записанные в его тетради два числа, а Коля – квадратный трёхчлен g(x), корнями которого являются записанные в его тетради два числа. Если уравнение  f(x) = g(x)  имеет два различных корня, то один из мальчиков заменяет свою пару чисел на эти корни; иначе ничего не происходит. Какое второе число могло оказаться у Пети в тетради в тот момент, когда первое стало равным 5?

Прислать комментарий     Решение

Задача 116636  (#9.7)

Темы:   [ Правильный (равносторонний) треугольник ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вспомогательные равные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Шмаров В.

Пусть ABC – правильный треугольник. На его стороне AC выбрана точка T, а на дугах AB и BC его описанной окружности выбраны точки M и N соответственно так, что  MT || BC  и  NT || AB.  Отрезки AN и MT пересекаются в точке X, а отрезки CM и NT – в точке Y. Докажите, что периметры многоугольников AXYC и XMBNY равны.

Прислать комментарий     Решение

Задача 116637  (#9.8)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
[ Комбинаторная геометрия (прочее) ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 5
Классы: 8,9,10

Автор: Кноп К.А.

В некоторых клетках доски 100×100 стоит по фишке. Назовём клетку красивой, если в соседних с ней по стороне клетках стоит чётное число фишек.
Может ли ровно одна клетка доски быть красивой?

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .