ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Для натуральных чисел  a > b > 1  определим последовательность  x1, x2, ...  формулой   .   Найдите наименьшее d, при котором ни при каких a и b эта последовательность не содержит d последовательных членов, являющихся простыми числами.

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]      



Задача 116644  (#10.7)

Темы:   [ Простые числа и их свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ НОД и НОК. Взаимная простота ]
[ Разложение на множители ]
Сложность: 4
Классы: 8,9,10

Для натуральных чисел  a > b > 1  определим последовательность  x1, x2, ...  формулой   .   Найдите наименьшее d, при котором ни при каких a и b эта последовательность не содержит d последовательных членов, являющихся простыми числами.

Прислать комментарий     Решение

Задача 116652  (#11.7)

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Принцип крайнего (прочее) ]
[ Доказательство от противного ]
[ Примеры и контрпримеры. Конструкции ]
[ Уравнения в целых числах ]
Сложность: 4+
Классы: 10,11

Для натурального a обозначим через P(a) наибольший простой делитель числа  a² + 1.
Докажите, что существует бесконечно много таких троек различных натуральных чисел a, b, c, что  P(a) = P(b) = P(c).

Прислать комментарий     Решение

Задача 116547  (#9.8)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Принцип Дирихле (прочее) ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 4
Классы: 8,9

Прямую палку длиной 2 метра распилили на N палочек, длина каждой из которых выражается целым числом сантиметров. При каком наименьшем N можно гарантировать, что, использовав все получившиеся палочки, можно, не ломая их, сложить контур некоторого прямоугольника?

Прислать комментарий     Решение

Задача 116570  (#11.8)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4-
Классы: 10,11

Даны положительные числа b и c. Докажите неравенство  (bc)2011(b + c)2011(cb)2011 ≥ (b2011c2011)(b2011 + c2011)(c2011b2011).

Прислать комментарий     Решение

Задача 116547  (#10.8)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Принцип Дирихле (прочее) ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 4
Классы: 8,9

Прямую палку длиной 2 метра распилили на N палочек, длина каждой из которых выражается целым числом сантиметров. При каком наименьшем N можно гарантировать, что, использовав все получившиеся палочки, можно, не ломая их, сложить контур некоторого прямоугольника?

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .