ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В параллелограмме ABCD опустили перпендикуляр BH на сторону AD. На отрезке BH отметили точку M, равноудалённую от точек C и D. Пусть точка K – середина стороны AB. Докажите, что угол MKD прямой.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 116675  (#4)

Темы:   [ Параллелограммы (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Конкуррентность высот. Углы между высотами. ]
[ Вспомогательные равные треугольники ]
[ Вписанные и описанные окружности ]
[ Медиана, проведенная к гипотенузе ]
[ Вписанный угол, опирающийся на диаметр ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4
Классы: 7,8,9

В параллелограмме ABCD опустили перпендикуляр BH на сторону AD. На отрезке BH отметили точку M, равноудалённую от точек C и D. Пусть точка K – середина стороны AB. Докажите, что угол MKD прямой.

Прислать комментарий     Решение

Задача 116676  (#4)

Темы:   [ Делимость чисел. Общие свойства ]
[ НОД и НОК. Взаимная простота ]
[ Принцип крайнего (прочее) ]
Сложность: 4+
Классы: 7,8,9

Рациональные числа x, y и z таковы, что все числа  x + y² + z²,  x² + y + z²  и  x² + y² + z  целые. Докажите, что число 2x целое.

Прислать комментарий     Решение

Задача 116693  (#4)

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Задачи с неравенствами. Разбор случаев ]
[ Индукция (прочее) ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 10

По кругу разложено чётное количество груш. Массы любых двух соседних отличаются не более чем на 1 г. Докажите, что можно все груши объединить в пары и разложить по кругу таким образом, чтобы массы любых двух соседних пар тоже отличались не более чем на 1 г.

Прислать комментарий     Решение

Задача 116699  (#4)

Темы:   [ Степень вершины ]
[ Сочетания и размещения ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 11

На собрание пришло n человек  (n > 1).  Оказалось, что у каждых двух из них среди собравшихся есть ровно двое общих знакомых.
  а) Докажите, что каждый из них знаком с одинаковым числом людей на этом собрании.
  б) Покажите, что n может быть больше 4.

Прислать комментарий     Решение

Задача 116705  (#4)

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Формула включения-исключения ]
[ Композиции симметрий ]
[ Доказательство от противного ]
[ Примеры и контрпримеры. Конструкции ]
[ Оценка + пример ]
Сложность: 4
Классы: 11

После обеда на прозрачной квадратной скатерти остались тёмные пятна общей площади S. Оказалось, что если сложить скатерть пополам вдоль любой из двух линий, соединяющих середины противоположных её сторон, или же вдоль одной из двух её диагоналей, то общая видимая площадь пятен будет равна S1. Если же сложить скатерть пополам вдоль другой её диагонали, то общая видимая площадь пятен останется равна S. Какое наименьшее значение может принимать величина  S1 : S?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .