ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Ивлев Ф.

Дан параллелограмм ABCD с тупым углом A. Точка H – основание перпендикуляра, опущенного из точки A на BC. Продолжение медианы CM треугольника ABC пересекает описанную около него окружность в точке K. Докажите, что точки K, H, C и D лежат на одной окружности.

   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 116755  (#9.1)

Темы:   [ Арифметика остатков (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Доказательство от противного ]
Сложность: 3
Классы: 9,10

Пусть  a1, ..., a11  – различные натуральные числа, не меньшие 2, сумма которых равна 407.
Может ли сумма остатков от деления некоторого натурального числа n на 22 числа  a1, ..., a11, 4a1, 4a2, ..., 4a11  равняться 2012?

Прислать комментарий     Решение

Задача 116763  (#10.1)

Темы:   [ Арифметика остатков (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 10,11

Пусть  a1, ..., a10  – различные натуральные числа, не меньшие 3, сумма которых равна 678. Может ли сумма остатков от деления некоторого натурального числа n на 20 чисел  a1, a2, ..., a10, 2a1, 2a2,..., 2a10  равняться 2012?

Прислать комментарий     Решение

Задача 116771  (#11.1)

Темы:   [ Процессы и операции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 10,11

Изначально на столе лежат 111 кусков пластилина одинаковой массы. За одну операцию можно выбрать несколько групп (возможно, одну) по одинаковому количеству кусков и в каждой группе весь пластилин слепить в один кусок. За какое наименьшее количество операций можно получить ровно 11 кусков, каждые два из которых имеют различные массы?

Прислать комментарий     Решение

Задача 116756  (#9.2)

Темы:   [ Правильные многоугольники ]
[ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 9,10

Автор: Храмцов Д.

На окружности отмечены 2012 точек, делящих её на равные дуги. Из них выбрали k точек и построили выпуклый k-угольник с вершинами
в выбранных точках. При каком наибольшем k могло оказаться, что у этого многоугольника нет параллельных сторон?

Прислать комментарий     Решение

Задача 116757  (#9.3)

Темы:   [ Признаки и свойства параллелограмма ]
[ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 9,10

Автор: Ивлев Ф.

Дан параллелограмм ABCD с тупым углом A. Точка H – основание перпендикуляра, опущенного из точки A на BC. Продолжение медианы CM треугольника ABC пересекает описанную около него окружность в точке K. Докажите, что точки K, H, C и D лежат на одной окружности.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .