ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В окружность Ω вписан четырёхугольник ABCD, диагонали AC и BD которого перпендикулярны. На сторонах AB и CD во внешнюю сторону как на диаметрах построены дуги α и β. Рассмотрим две луночки, образованные окружностью Ω и дугами α и β (см. рис.). Докажите, что максимальные радиусы окружностей, вписанных в эти луночки, равны. РешениеТочку внутри треугольника назовём хорошей, если длины проходящих через неё чевиан обратно пропорциональны длинам соответствующих сторон. Найдите все треугольники, для которых число хороших точек – максимально возможное. Решение |
Страница: 1 2 >> [Всего задач: 8]
При каких n можно оклеить в один слой поверхность клетчатого куба n×n×n бумажными прямоугольниками 1×2 так, чтобы каждый прямоугольник граничил по отрезкам сторон ровно с пятью другими?
Точку внутри треугольника назовём хорошей, если длины проходящих через неё чевиан обратно пропорциональны длинам соответствующих сторон. Найдите все треугольники, для которых число хороших точек – максимально возможное.
Пусть M и I – точки пересечения медиан и биссектрис неравнобедренного треугольника ABC, а r – радиус вписанной в него окружности.
Дан квадрат. Найдите геометрическое место середин гипотенуз прямоугольных треугольников, вершины которых лежат на попарно различных сторонах квадрата и не совпадают с его вершинами.
В окружность Ω вписан четырёхугольник ABCD, диагонали AC и BD которого перпендикулярны. На сторонах AB и CD во внешнюю сторону как на диаметрах построены дуги α и β. Рассмотрим две луночки, образованные окружностью Ω и дугами α и β (см. рис.). Докажите, что максимальные радиусы окружностей, вписанных в эти луночки, равны.
Страница: 1 2 >> [Всего задач: 8] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|