ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Натуральное число n таково, что числа 2n + 1 и 3n + 1 являются квадратами. Может ли при этом число 5n + 3 быть простым? ![]() ![]() Отрезки AB и CD длины 1 пересекаются в точке O , причем ![]() ![]() ![]() Имеется 200 гирек массами 1, 2, ..., 200 грамм. Их разложили на две чаши весов по 100 гирек на каждую, и весы оказались в равновесии. На каждой гирьке записали, сколько гирек на противоположной чаше легче неё. Докажите, что сумма чисел, записанных на гирьках левой чаши, равна сумме чисел, записанных на гирьках правой чаши. ![]() ![]() ![]() Hа плоскости даны две окружности C1 и C2 с центрами O1 и O2 и радиусами 2R и R соответственно (O1O2 > 3R). Hайдите геометрическое место центров тяжести треугольников, у которых одна вершина лежит на C1, а две другие — на C2. ![]() ![]() ![]() Если от некоторого трёхзначного числа отнять 6, то оно разделится на 7, если
отнять 7, то оно разделится на 8, а если отнять 8, то оно разделится на 9. ![]() ![]() |
Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 810]
Известно, что натуральное число n в 3 раза больше суммы своих цифр. Докажите, что n делится на 27.
Если от некоторого трёхзначного числа отнять 6, то оно разделится на 7, если
отнять 7, то оно разделится на 8, а если отнять 8, то оно разделится на 9.
На окружности отмечено n точек, причём известно, что для каждых двух отмеченных точек одна из дуг, соединяющих их, имеет величину, меньшую 120°. Докажите, что все точки лежат на одной дуге величиной 120°.
Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 810] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |