ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Натуральное число n таково, что числа  2n + 1  и  3n + 1  являются квадратами. Может ли при этом число  5n + 3  быть простым?

Вниз   Решение


Отрезки AB и CD длины 1 пересекаются в точке O , причем AOC=60o . Докажите, что AC+BD1 .

ВверхВниз   Решение


Имеется 200 гирек массами 1, 2, ..., 200 грамм. Их разложили на две чаши весов по 100 гирек на каждую, и весы оказались в равновесии. На каждой гирьке записали, сколько гирек на противоположной чаше легче неё. Докажите, что сумма чисел, записанных на гирьках левой чаши, равна сумме чисел, записанных на гирьках правой чаши.

ВверхВниз   Решение


Hа плоскости даны две окружности C1 и C2 с центрами O1 и O2 и радиусами 2R и R соответственно (O1O2 > 3R). Hайдите геометрическое место центров тяжести треугольников, у которых одна вершина лежит на C1, а две другие — на C2.

ВверхВниз   Решение


Если от некоторого трёхзначного числа отнять 6, то оно разделится на 7, если отнять 7, то оно разделится на 8, а если отнять 8, то оно разделится на 9.
Определите это число.

Вверх   Решение

Задачи

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 810]      



Задача 35087

Тема:   [ Стереометрия (прочее) ]
Сложность: 3
Классы: 9,10,11

Известно, что сумма трех плоских углов при каждой вершине тетраэдра равна 1800. Докажите, что все его грани - равные треугольники.
Прислать комментарий     Решение


Задача 35092

Тема:   [ Признаки делимости на 3 и 9 ]
Сложность: 3
Классы: 8,9

Известно, что натуральное число n в 3 раза больше суммы своих цифр. Докажите, что n делится на 27.

Прислать комментарий     Решение

Задача 35093

Темы:   [ Деление с остатком ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 6,7,8

Если от некоторого трёхзначного числа отнять 6, то оно разделится на 7, если отнять 7, то оно разделится на 8, а если отнять 8, то оно разделится на 9.
Определите это число.

Прислать комментарий     Решение

Задача 35094

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Наименьший или наибольший угол ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 3
Классы: 8,9,10

На окружности отмечено n точек, причём известно, что для каждых двух отмеченных точек одна из дуг, соединяющих их, имеет величину, меньшую 120°. Докажите, что все точки лежат на одной дуге величиной 120°.

Прислать комментарий     Решение

Задача 35101

Тема:   [ Десятичная система счисления ]
Сложность: 3
Классы: 7,8,9

Докажите, что все числа вида 1156, 111556, 11115556,... являются точными квадратами.
Прислать комментарий     Решение


Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 810]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .