ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Каково минимальное целое число вида 111...11, делящееся на 333...33 (100 троек)?

   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 77967  (#1)

Темы:   [ Трапеции (прочее) ]
[ Геометрические неравенства (прочее) ]
Сложность: 2
Классы: 8

Доказать, что в трапеции сумма углов при меньшем основании больше, чем при большем.
Прислать комментарий     Решение


Задача 35324  (#2)

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

Каково минимальное целое число вида 111...11, делящееся на 333...33 (100 троек)?

Прислать комментарий     Решение

Задача 77969  (#3)

Темы:   [ Построения с помощью прямого угла ]
[ Перпендикулярные прямые ]
Сложность: 3
Классы: 8,9

Разделить отрезок пополам с помощью угольника. (С помощью угольника можно проводить прямые и восстанавливать перпендикуляры, опускать перпендикуляры нельзя.)

Прислать комментарий     Решение

Задача 77970  (#4)

Темы:   [ Делимость чисел. Общие свойства ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 2+
Классы: 7,8,9

Докажите, что при любом натуральном n число  n² + 8n + 15  не делится на  n + 4.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .